Are Coumarin Derivatives The New Keys in Depression Treatment? In silico Key-lock Fitting Analysis of Coumarin Derivatives with Monoamine Oxidase-A


  • Dilara Karaman Uludag University
  • Kemal Yelekci Kadir Has University
  • Serkan Altuntas Staromics OU Company



coumarin derivatives, monoamine oxidase, de novo drug design, molecular modeling, docking


The research of ligand-protein interactions with in silico molecular modeling studies on the atomic level gives an opportunity to be understood the pharmacokinetic metabolism of anti-depressant drug candidates. Monoamine oxidase (MAO) enzymes are important targets for the treatment of depressive disorder. MAOs have two isoforms as MAO-A and MAO-B being responsible for catalyzing of neurological amines. In this study a new series of coumarin derivatives were designed for selective and reversible inhibition of MAO-A enzyme. 3rd, 5th and 7th positions were selected to be placed of five different side groups. Docking procedures of each ligand in M series of these novel 125 compounds were executed with 10 runs by using AutoDock4.2 software. Docking results were analyzed via Discovery Studio 3.1 (Biovia Inc.). The most promising compounds were M118 and M123 according to selectivity index, SI (MAO-B/MAO-A)=180 fold and 209 fold and Kivalues 7.25 nM and 12.01 nM, respectively. Overall, the current study provided significant knowledge for the development of new anti-depressant drugs.

Author Biography

Kemal Yelekci, Kadir Has University

Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Sciences




Bach, A. W.; Lan, N. C.; Johnson, D. L.; Abell, C. W.; Bembenek, M. E.; Kwan, S. W.; Seeburg, P. H.; Shih, J. C., cDNA cloning of human liver monoamine oxidase A and B: Molecular basis of differences in enzymatic properties. Proc Natl Acad Sci 1988, 85, 4934-38.

Shih, J.; Chen, K.; Ridd, M.J. Monoamine oxidase: From genes to behavior. Annu Rev Neurosci 1999, 22, 197–217.

Geha, R. M.; Rebrin, I.; Chen, K.; Shih, J. C., Substrate and Inhibitor Specificities for Human Monoamine Oxidase A and B Are Influenced by a Single Amino Acid. J Bio Chem 2001, 276, 9877–82.

Rodríguez, M. J.; Saura, J.; Billet, E. E.; Finch, Ch. C.; Mahy, N., Cellular localization of monoamine oxidase. A and B in human tissues outside of central nervous system. Cell Tissue Res 2001, 304, 215-220.

Kawai, Y.; Kunitomo, J.; Ohno, A., Atropisomeric Flavoenzyme Models with a Modified Pyrimidine. Kyoto: ICR Annual Report 3, 1996

Youdim, M. B. H.; Edmondson, D.; Tipton, K. F., The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci 2006, 7, 295-309.

Helguera, A. M.; Garrido, A. P.; Gaspar, A.; Reis, J.; Cogide, F.; Vina, D.; Borges, F.; Corderio, M. N. D. S., Combining QSAR Classification Models for Predictive modeling of Human Monoamine Oxidase Inhibitors. Eur J Med Chem 2013, 59, 75-90.

Knudsen-Gerber, D. S., Selegeline and Rasageline: Twins or Distant Cousins? Guidelines. Consult Pharm 2011, 26, 48-51.

Kaludercic, N.; Carpi, A.; Menabò, R.; Lisa, F. D.; Paolocci, N. Monoamine Oxidases (MAO) in the Pathogenesis of Heart Failure and Ischemia/Reperfusion Injury. Biochim Biophys Acta (BBA) - Mol Cell Res 2011, 1813, 1323–32.

Matos, M. J.; Viña, D.; Quezada, E.; Picciau, C.; Delogu, G.; Orallo, F.; Santana, L.; Uriarte, E., A New Series of 3-phenylcoumarins as potent and Selective MAO-B Inhibitors. Bioorg Med Chem Lett 2009, 19, 3268-70.

Abdelhafez, O. M.; Amin, K. A.; Ali, H. I., Abdall, M. M., Batran, R. Z., Monoamine Oxidase A and B Inhibiting Effect and Molecular Modeling of Some Synthesized Coumarin Derivatives. Neurochem Int 2013, 62, 198-209.

Matos, M. J.; Santana, L.; Janeiro, P.; Qezada, E.; Uriarte, E.; Gonzalez-Diaz, H.; Viña, D.; Oralla, F., Design, Synthesis and Pharmacological Evalution of New Coumarin Derivatives as Monoamine Oxidase A and B Inhibitors. 12th Int Elect Conf on Synt Org Chem (ECSOC-12) 2008.

Matos, M. J.; Viña, D.; Picciau, C.; Orallo, F.; Santana, L.; Uriarte, E., Synthesis and Evaluation of 6-methyl-3-phenylcoumarins as Potent and Selective MAO-B Inhibitors; Bioorg & Med Chem Lett 2009, 19, 5053-55.

Santana, L.; González-Díaz, H.; Quezada, E.; Uriarte, E.; Yáñez, M.; Viña, D.; Orallo, F., Quantative Structure-Activity Relationship and Complex Network Approach to Monoamine Oxidase A and B Inhibitors. J Med Chem 2008, 51, 6740-51.

Matos, M. J.; Teran, C.; Perez-Castillo, Y.; Uriarte, E.; Santana, L.; Viña, D., Synthesis and Study of A Series of 3-arylcoumarins as Potent and Selective Monoamine Oxidase B Inhibitor. J Med Chem 2011, 54, 7127-37.

Iranshahi, M.; Askari, M.; Sahebkar, A.; Hadjipavlou-Litina, D., Evaluation of Antioxidant, Anti-inflammatory and Lipoxygenase Inhibitory Activities of the Prenylated Coumarin Umbelliprenin. DARU, 2009, 17, 99–103.

Goodman & Gilman’s. The Pharmacological basis of therapeutics: Blood coagulation and Anticoagulant, thrombolytic and Anti-platelet drugs. 11th ed. 2006, 1325-1328.

Bolakatti, G. S.; Maddi, V. S.; Mamledesai, S. N.; Ronad, P. M.; Palkar, M. B.; Swamy, S., Synthesis and evaluation of anti-inflammatory and analgesic activities of a novel series of coumarin mannich bases. Arzneim-Forsch/Drug Res 2008, 58, 515–520.

Myers, R. B.; Parker, M.; Grizzle, W. E., The effects of coumarin and suramin on the growth of malignant renal and prostatic cell lines. J Cancer Res Clin Oncol 1994, 120, 11–13

Mishra, S.; Pandey, A.; Manvati, S., Coumarin: An emerging antiviral agent. Heliyon, 2020, 6, 1-7.

Dexeus, F. H.; Logothetis, C. J.; Sella, A.; Fitz, K.; Amato, R.; Reuben, J. M., Design & synthesis of some novel substituted coumarin & evaluated for anti-convulsant activity. J Clin Oncol. 1990, 8, 314-325.

Čačić, M.; Pavić, V.; Molnar, M.; Šarkanj, B.; Has-Schön, E., Design and Synthesis of Some New 1,3,4-Thiadiazines with Coumarin Moieties and Their Antioxidative and Antifungal Activity. Molecules 2014, 19, 1163-77.

Alipour, M.; Khoobi, M.; Emami, S.; Fallah-Benakohal, S.; Ghasemi-Niri, S. F.; Abdollahi, M.; Foroumadi, A.; Shafiee, A., Antinociceptive Properties of New Coumarin Derivatives Bearing Substituted 3,4-dihydro-2H-benzothiazines. Daru 2014, 22, 9.

Morris, G. M.; Goodsell, D. S.; Halliday, R.S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J., Automated Docking Using a Lamarckian Genetic Algorithm and and Empirical Binding Free Energy Function. J Comput Chem 1998, 19, 1639-62.

Huey, R.; Morris, G. M.; Olson, A. J.; Goodsell, D. S. A., Semiempirical Free Energy Force Field with Charge-Based Desolvation. J Comput Chem 2007, 28, 1145-1652.

Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. Autodock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 2009, 30, 2785–91.

Dassault Systèmes BIOVIA, Discovery Studio, 3.1, San Diego: Dassault Systèmes, 2014.

Toprakçı, M.; Yelekçi K., Docking Studies on Monoamine Oxidase-B Inhibitors: Estimation of Inhibition Constants (Ki) of a Series of Experimentally Tested Compounds. Bioorg Med Chem Lett 2005, 15, 4438–4446.

Gökhan-Kelekçi, N.; Şimşek, Ö.Ö.; Ercan, A.; Yelekçi, K.; Şahin, Z. S.; Işık, Ş.; Uçar, G.; Bilgin, A. A., Synthesis and molecular modeling of some novel hexahydroindazole derivatives as potent monoamine oxidase inhibitors. Bioorg Med Chem 2009, 17, 6761–72.

Yelekçi, K.; Büyüktürk, B.; Kayrak, N. In silico identification of novel and selective monoamine oxidase B inhibitors. J Neural Transm 2013, 120, 853–858.

Goksen, U. S.; Sarigul, S.; Bultinck, P.; Herrebout, W.; Dogan I.; Yelekci K.; Ucar G.; Gokhan-Kelekci N., Absolute configuration and biological profile of pyrazoline enantiomers as MAO inhibitory activity. Chirality 2019, 31, 21– 33.

Turkmenoglu F. P.; Baysal İ.; Ciftci-Yabanoglu, S.; Yelekci, K.; Temel, H.; Paşa, S.; Ezer, N.; Çalış, İ.; Ucar, G., Flavonoids from Sideritis Species: Human Monoamine Oxidase (hMAO) Inhibitory Activities, Molecular Docking Studies and Crystal Structure of Xanthomicrol. Molecules 2015, 20, 7454-73

Kumar, A.; Jain, S.; Parle, M.; Jain, N.; Kumar, P., 3-Aryl-1-Phenyl-1H-Pyrazole Derivatives as New Multitarget Directed Ligands for the Treatment of Alzheimer’s Disease, with Acetylcholinesterase and Monoamine Oxidase Inhibitory Properties. EXCLI J 2013, 12, 1030-42

Binda, C.; Wang, J.; Pisani, L.; Caccia, C.; Carotti, A.; Salvati, P.; Edmonson, D. E.; Mattevi, A., Structures of Human Monoamine Oxydase B Complexes with Selective Noncovalent Inhibitors: Safinamide and Coumarin Analogs. J Med Chem 2007, 50, 5848-52

Son, S.Y.; Ma, J.; Yoshimura, M.; Tsukihara, T., Crystal Structure of Human Monoamine Oxidase A with Harmine. Proc Natl Acad Sci U S A 2008, 105, 5739-5744




How to Cite

Karaman, D., YELEKCI, K., & ALTUNTAS, S. (2020). Are Coumarin Derivatives The New Keys in Depression Treatment? In silico Key-lock Fitting Analysis of Coumarin Derivatives with Monoamine Oxidase-A. JOURNAL OF PHARMACEUTICAL CHEMISTRY, 7.