Design, Synthesis and biological evaluation of diazeno-thiazole derivatives as ribonucleotide reductase inhibitors

Mohd Usman Mohd Siddique, Surender Singh Jadav, Geraldine Graser, Philipp Saiko, Thomas Szekeres, Barij N Sinha, Venkatesan Jayaprakash

Abstract


Ribonucleotide reductase(RNR) is a metalloenzyme that catalyses the rate limiting step in DNA synthesis and repair. It causes the reduction of ribonucleotide to 2’-deoxyribonuclotides which are used as precursors for DNA synthesis, thus offering a good target for inhibition of cell synthesis. Experimental results have been proven that RNR inhibitors can be used as antiviral, anticancer or antibacterial agents. Here we report the synthesis of a novel class of diazeno-thiazole derivatives as potent RNR inhibitors. A series of forty molecules were synthesized and evaluated for their RNR inhibitory properties. All compounds were found to be good inhibitors of the RNR. Compound 3iwas found to be most active showing an IC50 value of 0.8 µm. The established SAR study indicated the presence of a polar bridge with an adjacent flexible aromatic ringprerequisite for RNR inhibitory activity. Moreover, compounds having an additional 4-chloro phenyl ring were found to be most potent.

Keywords


Ribonucleotide reductase(RNR); diazeno-thiazole derivatives; RNR inhibitor

Full Text:

PDF

References


Graslund, A.; Sahlin, M. Electron paramagnetic resonance and nuclear magnetic resonance studies of class I ribonucleotide reductase. Annu Rev Biophys Biomol Struct 1996, 25 (1), 259-286.

https://doi.org/10.1146/annurev.bb.25.060196.001355

Reichard, P.; Ehrenberg, A. Ribonucleotide reductase--a radical enzyme. Science 1983, 221 (4610), 514-519.

https://doi.org/10.1126/science.6306767

Gräslund, A.; Ehrenberg, A. Tyrosyl radical, diiron center and enzyme mechanism in ribonucleotide reductase. Appl Magn Reson 2007, 31 (3), 447-455.

https://doi.org/10.1007/BF03166595

Herrick, J.; Sclavi, B. Ribonucleotide reductase and the regulation of DNA replication: an old story and an ancient heritage. Mol Microbiol 2007, 63 (1), 22-34.

https://doi.org/10.1111/j.1365-2958.2006.05493.x

Nordlund, P.; Reichard, P. Ribonucleotide reductases. Annu Rev Biochem 2006, 75, 681-706.

https://doi.org/10.1146/annurev.biochem.75.103004.142443

Jordan, A.; Reichard, P. Ribonucleotide reductases. Annu Rev Biochem 1998, 67 (1), 71-98.

https://doi.org/10.1146/annurev.biochem.67.1.71

Shao, J.; Zhou, B.; Chu, B.; Yen, Y. Ribonucleotide reductase inhibitors and future drug design. Curr Cancer Drug Targets 2006, 6 (5), 409-431.

https://doi.org/10.2174/156800906777723949

Seiwert, T. Y.; Haraf, D. J.; Cohen, E. E.; Stenson, K.; Witt, M. E.; Dekker, A.; Kocherginsky, M.; Weichselbaum, R. R.; Chen, H. X.; Vokes, E. E. Phase I study of bevacizumab added to fluorouracil-and hydroxyurea-based concomitant chemoradiotherapy for poor-prognosis head and neck cancer. J Clin Oncol 2008, 26 (10), 1732-1741.

https://doi.org/10.1200/JCO.2007.13.1706

SHN Moorthy, N.; MFSA Cerqueira, N.; J Ramos, M.; A Fernandes, P. Development of ribonucleotide reductase inhibitors: a review on structure activity relationships. Mini Rev Med Chem 2013, 13 (13), 1862-1872.

https://doi.org/10.2174/13895575113136660090

Nutting, C.; Van Herpen, C.; Miah, A.; Bhide, S.; Machiels, J.-P.; Buter, J.; Kelly, C.; De Raucourt, D.; Harrington, K. Phase II study of 3-AP Triapine in patients with recurrent or metastatic head and neck squamous cell carcinoma. Ann Oncol 2009, mdn775.

https://doi.org/10.1093/annonc/mdn775

Ma, B.; Goh, B. C.; Tan, E. H.; Lam, K. C.; Soo, R.; Leong, S. S.; Wang, L. Z.; Mo, F.; Chan, A. T.; Zee, B. A multicenter phase II trial of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP, Triapine®) and gemcitabine in advanced non-small-cell lung cancer with pharmacokinetic evaluation using peripheral blood mononuclear cells. Invest New Drugs 2008, 26 (2), 169-173.

https://doi.org/10.1007/s10637-007-9085-0

Cerqueira, N. M.; Pereira, S.; Fernandes, P. A.; Ramos, M. J. Overview of ribonucleotide reductase inhibitors: an appealing target in anti-tumour therapy. Curr Med Chem 2005, 12 (11), 1283-1294.

https://doi.org/10.2174/0929867054020981

Jadav, S. S.; Kaptein, S.; Timiri, A.; De Burghgraeve, T.; Badavath, V. N.; Ganesan, R.; Sinha, B. N.; Neyts, J.; Leyssen, P.; Jayaprakash, V. Design, synthesis, optimization and antiviral activity of a class of hybrid dengue virus E protein inhibitors. Biorg Med Chem Lett 2015, 25 (8), 1747-1752

https://doi.org/10.1016/j.bmcl.2015.02.059




DOI: http://dx.doi.org/10.14805/jphchem.2017.art77

Refbacks

  • There are currently no refbacks.




Copyright (c) 2017 JOURNAL OF PHARMACEUTICAL CHEMISTRY



                              VENSEL PUBLICATIONS@2019

 20, Keelavaithianathapuram, 4th Street, Madurai-625 018 (TN), India